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In this paper, we explore the possibility that machine learning approaches to natural-

language processing being developed in engineering-oriented computational linguis-

tics may be able to provide specific scientific insights into the nature of human

language. We argue that, in principle, machine learning results could inform basic

debates about language, in one area at least, and that in practice, existing results may

offer initial tentative support for this prospect. Further, results from computational

learning theory can inform arguments carried on within linguistic theory as well.

1. IN T R O D U C T I O N

It is widely believed that the scientific enterprise of theoretical linguistics on

one hand and the engineering of language applications on the other are
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separate endeavors with little to contribute to each other at the moment in

the way of techniques and results. In this paper, we explore the possibility

that machine learning approaches to natural-language processing (NLP)

being developed in engineering-oriented computational linguistics (CL)

may be able to provide specific scientific insights into the nature of human

language. We argue that, in principle, machine learning (ML) results could

inform basic debates about language, in one area at least, and that in

practice, existing results may offer initial tentative support for this prospect.

Further, results from computational learning theory can inform arguments

carried on within linguistic theory as well.

A basic conundrum of modern linguistic research is the question of how

natural languages can be acquired. It is uncontroversial that the learning of a

natural language (or of anything else) requires some assumptions concerning

the structure of the phenomena being acquired. So, for example, consider a

computer program that is designed to learn to classify e-mails as spam or

non-spam. One could assume that spam is identified by the magnitude of a

weighted average over a set of indicator features fi, each of which specifies

whether a given word wi appears in the e-mail. We could then use a corpus of

e-mail messages, each marked as to their spam status, to train the weights

appropriately. Such a learning approach (essentially perceptron learning

over the features) assumes (erroneously, of course, but often effectively)

that the phenomenon being investigated, spam status, is characterizable

independently of any properties of the e-mail but those manifested in the

word-existence features, and that their impact on spam status is strictly

linear. Alternatively, some other set of features, method for computing their

combination, and so forth might be used, reflecting other assumptions about

the nature of the phenomenon being investigated.

In the field of machine learning, the prior structure imputed to the

phenomenon is referred to as the MODEL, which allows for variation in a set

of parameters that may be of different sorts – continuous or discrete, fixed or

combinatorial. Learning algorithms are procedures for setting these par-

ameters on the basis of samples (OBSERVATIONS) of the phenomenon being

acquired. The success of the algorithm relative to the observations can be

verified by testing to see if it generalizes correctly to unseen instances of the

phenomenon. The role of the model and algorithm is to provide a learning

BIAS.2 In linguistics, this prior structure is sometimes referred to as UNIVERSAL

GRAMMAR (UG), the innate (that is experientially prior) aspect of the human

language endowment that allows (biases) language acquisition. In the sequel,

[2] This use of the term BIAS has no pejorative import. Rather, it expresses the fact that the
model biases learning according to a priori expectations.

S H A L O M L A P P I N & S T U A R T M. S H I E B E R

394



we will uniformly use the term LEARNING BIAS for this model or universal

grammar aspect.3

It is uncontroversial, because it is definitional and therefore trivial, that

human language acquisition must have some bias or innate component in

this technical sense.4 There is, however, a non-trivial open question – some

would call it the key question in linguistics – as to the detailed structure of

this bias, the NATURE OF UNIVERSAL GRAMMAR. Which aspects are derivable

from general elements of cognition and which are task-specific properties of

natural-language acquisition? In the former case, we might expect simpler

models, more uniform in structure, and in the latter case, structures that are

more complex, idiosyncratic, and highly articulated. A primary point of this

paper, however, is that THERE IS NO SUCH THING AS A NO-BIAS MODEL.

All things being equal, methodological simplicity leads us to prefer an

uncomplicated, uniform, task-general learning model, which we will term a

WEAK-BIAS model in contrast to STRONG-BIAS models that are highly articu-

lated, non-uniform, and task-specific.5 But all things might not be equal.

Weak-bias models might not be, and it is often argued are not, sufficient for

the purpose of acquiring linguistic knowledge. Variations of such arguments

have been advanced under the name POVERTY OF THE STIMULUS. They assert

that without a certain task-specific complexity to the learning bias, the

training data are insufficient to permit acquisition of a model that generalizes

appropriately to the full range of unseen instances of some phenomenon

under investigation. It is a predominant view in linguistics that the com-

plexity of the natural languages that adults speak requires much of the

[3] We take bias in this sense to be a feature of a learning algorithm, and we do not make any
assumptions that it is an innate, biologically determined property of human learners. We
also do not claim that learning algorithms that provide computationally viable procedures
for grammar induction correspond to psychological processing mechanisms. We treat the
bias of a successful learning algorithm as specifying a universal grammar only in the sense
that it characterizes the hypothesis space of learnable languages for that procedure.

[4] Nonetheless, one sees expressions of the view that statistical learning methods are somehow
faulty for lacking any bias. For instance:

‘But a more serious problem with DDL [data-driven learning], both present and future,
has to do with the wild statistical disparities between what is presented to children and
how children actually learn. As pointed out by Fodor & Pylyshyn (1988) and others, a
DDL model without innate knowledge, or learning priors, can do nothing but recap-
itulate the statistical distributions of adult input. But children often learn their languages
in ways that clearly defy such distributions. ’ (Legate & Yang 2002)

In fact, without ‘ learning priors’, not even the statistical distribution can be recapitulated,
any distribution being based on the structure of its parameters. Without a learning prior, a
learning method can merely recapitulate the training data, without generalizing to a dis-
tribution, and even such recapitulation constitutes a bias (against generalization). The
issue, of course, is whether the innate knowledge or learning prior is strong or weak.

[5] The range from weak to strong bias is, of course, a continuum, not a dichotomy. However,
we will continue to use the terms loosely to distinguish models that fall at the respective
ends of the spectrum.

M A C H I N E L E A R N I N G T H E O R Y A N D P R A C T I C E

395



intricate structure of language to be innate, given the limited evidence to

which children are exposed. Chomsky (2000: 6f.) summarizes this view:

A careful look at the interpretation of expressions reveals very quickly that

from the very earliest stages, the child knows vastly more than experience

has provided. That is true even of simple words. At peak periods of

language growth, a child is acquiring words at a rate of about one an hour,

with extremely limited exposure under highly ambiguous conditions. The

words are understood in delicate and intricate ways that are far beyond

the reach of any dictionary, and are only beginning to be investigated.

When we move beyond single words, the conclusion becomes even more

dramatic. Language acquisition seems much like the growth of organs

generally; it is something that happens to a child, not that the child does.

And while the environment plainly matters, the general course of devel-

opment and the basic features of what emerges are predetermined by the

initial state. But the initial state is a common human possession. It must

be, then, that in their essential properties and even down to fine detail,

languages are cast in the same mold.

An influential approach to investigating this key question has been

to construct linguistically motivated infrastructures – representations of

linguistically-oriented parameters and constraints – that purport to capture

universal aspects of language as proposals for the learning bias. Chomsky

(2000: 8) describes this Principles and Parameters (P&P) model in the

following terms:

We can think of the initial state of the faculty of language as a fixed

network connected to a switch box; the network is constituted of the

principles of language, while the switches are options to be determined by

experience. When switches are set one way, we have Swahili ; when they

are set another way, we have Japanese. Each possible human language is

identified as a particular setting of the switches – a setting of parameters,

in technical terminology. If the research program succeeds, we should be

able literally to deduce Swahili from one choice of settings, Japanese from

another, and so on through the languages that humans acquire. The

empirical conditions of language acquisition require that the switches can

be set on the basis of the very limited properties of information that is

available to the child.

We argue that the general machine learning techniques now being used

with some success in engineering-oriented computational linguistics provide

an alternative approach to this question, and one that could provide quite a

different answer. In particular, to the extent that a given machine learning

experiment is successful in acquiring a particular phenomenon, it shows that

the learning bias that the model embodies is sufficient for acquisition

of that phenomenon. If, further, the bias is relatively weak, containing few
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assumptions and little task-specificity, the experiment elucidates the key

question by showing that arguments against the model based on its inability

to yield the relevant linguistic knowledge are groundless. (Of course, other

arguments against the model might still apply.)

In addition, we argue that theoretical results in machine learning – more

specifically, results from computational learning theory – give further sup-

port for alternatives to the P&P model. Computational learning theory

addresses issues of learnability under various mathematical assumptions: in

particular, it focuses on whether learning is possible in different scenarios,

and on the resources required for successful learning in terms of computation

and number of training examples. We focus on theoretical results from

PAC/VC learning (Probably Approximately Correct learning, with Vapnik

and Chervonenkis dimensionality, discussed in section 5), although similar

results are found in models of online learning, and Bayesian methods.

Results from computational learning theory have underpinned much of the

work in more applied machine learning, including research in engineering-

oriented computational linguistics. These results also suggest that the learn-

ing framework implicit in the P&P approach – n fixed, binary parameters – is

only one of a range of plausible definitions for ‘UG’ or ‘ innate bias ’, at least

if learnability arguments alone are used to motivate arguments about the

nature of UG.

To summarize, we support the view, which we take to be uncontroversial,

that some form of universal grammar underlies the ability of humans to

acquire language. Where it lies on the scale from weak to strong bias is

contentious, however, and machine learning experiments and theory can

clarify that position.

In order to provide pertinent background for our argument, we review

the poverty-of-stimulus argument in section 2. We sketch the basic design of

machine learning systems in section 3. We then show, using parsing as an

exemplar problem,6 how machine learning methods (hence, any experiments

based on them) inherently involve learning biases, that is, claims about the

nature of UG, but we demonstrate that these assumptions can be quite weak,

in contrast to the richly articulated set of structures and conditions that

many theoretical linguists seek to attribute to the initial state of the language

acquisition device (section 4). We first look at supervised machine learning in

section 4.1, focusing on the work of Collins (1999) on probabilistic parsing,

[6] We are limiting ourselves to parsing in order to go into some detail in clarifying the role of
learning bias in machine learning and language acquisition. There has been a great deal of
work on the application of machine learning methods to a wide variety of tasks in NLP in
addition to parsing. This work has achieved impressive results in the full spectrum of
NL tasks, including areas like speech recognition, morphological analysis, part of speech
tagging, anaphora resolution, semantic interpretation, domain theory identification, dis-
course coherence, and dialogue interpretation. For an overview of some of this work in the
context of the issues we are discussing here see the discussion by Lappin (2005).
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arguing that much of the success of these methods is based on distributional

bias, as opposed to the categorical bias assumed in the linguistics literature.

Then in section 4.2 we consider recent work by Klein & Manning (2002,

2004) on unsupervised grammar induction, which makes even fewer learning

bias assumptions than supervised learning.

In addition to empirical work on machine learning for natural-language

processing, theoretical research can elucidate language acquisition argu-

ments as well. We summarize pertinent results from computational learning

theory in section 5, highlighting their import for linguistic theorizing. In

section 6 we focus on a number of important distinctions between the

concept of parameter current in theoretical linguistics on one hand and in

probabilistic language modeling on the other. We suggest that while the

former may well be problematic on empirical grounds, the latter provides a

well motivated basis for a weak-bias model of UG that can, in principle,

support a computationally viable theory of language acquisition.

Finally, in section 7 we discuss the implications of the surprisingly good

performance of machine learning in grammar induction for theories of

grammar and language acquisition. We suggest that arguments from the

insufficiency of weak-bias models may not provide motivation for elaborate

notions of UG. Most importantly, however, regardless of the particular

conclusions one draws from the current contingent state of machine-learned

linguistic performance, the more general point remains that results of such

experiments could in principle falsify stimulus-poverty arguments for strong

learning bias. In this way at least, the methods of engineering-oriented

computational linguistics can inform theoretical linguistics.

2. PO V E R T Y-O F- S T I M U L U S A R G U M E N T S F O R A S T R O N G

L E A R N I N G B I A S

Linguists have argued for a highly articulated task-specific language acqui-

sition device to account for the speed and efficiency with which humans

acquire natural language on the basis of the relevant evidence, regarded

intuitively to be sparse. In our terms this involves assuming a strong learning

bias that encodes a rich set of constraints on the properties of the object to be

acquired from the data. The strong-bias view relies primarily on the poverty-

of-stimulus argument to motivate the claim that a powerful task-specific bias

is required for language acquisition. According to this argument, the com-

plex linguistic knowledge that a child achieves within a short time, with very

limited data, cannot be explained through general learning procedures of the

kind involved in other cognitive tasks.

The argument can be summarized as follows: There is insufficient evidence

in pertinent language observations to accurately induce a particular general

phenomenon regarding language with a weak-bias learning method alone.

The particular phenomenon appears in language. Therefore, language
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observations are not used with a weak-bias learning method alone in

inducing the generalization; strong bias is required. This is, at root, a ‘What

else could it be? ’ argument. It asserts that, given the complexity of gram-

matical knowledge and the lack of evidence for discerning its properties, we

are forced to the conclusion that much of this knowledge is not learned at all

but must already be present in the initial design of the language learner.

In part, the basis for this claim is the assumption that first language

learners have access to very limited amounts of data (the ‘pertinent language

observations’), largely free of negative information (corrections), and thus

inadequate to support inductive projection of grammars under the attested

conditions of acquisition without the assumed bias.

The claims we make here are independent of the issue of what exactly the

data available to the language learner are. Whatever they are determined to

be, machine learning can potentially be used, as argued below, to support

their sufficiency for learning of the pertinent phenomena.

Nonetheless, it is worth digressing to mention that particular aspects of

this view of data poverty have been increasingly subject to challenge. With

respect to the absence of negative data, Chouinard & Clark (2003) provide a

detailed cross-linguistic study of several language acquisition corpora in the

CHILDES collection (MacWhinney 1995) suggesting that, in fact, there is a

substantial amount of negative evidence available to children, and this

evidence plays a significant role in the acquisition process. They found that in

the initial phase of language learning (2–2.5 years) 50–67% of the child’s

errors are explicitly reformulated by parents into congruent contrast utter-

ances in which the error is replaced by a correct form. They also show that

children attend to these corrections in a high proportion of cases. Saxton

et al. (2005) offer evidence that adult clarification requests significantly

facilitate the transition from ill-formed to correct syntactic structures in

child grammar induction. Negative evidence greatly facilitates data-driven

grammar induction by significantly reducing the search space of possible

rules and constructions. It effectively reduces language acquisition to an

instance of supervised learning. Similarly, contextual information available

to the language learner can, in principle, provide further constraints on the

learning process.

The lack of pertinent data for particular phenomena has also been

questioned. For example, English auxiliary inversion for question formation

has previously been cited (among others, by Crain 1991) as a phenomenon

that could not be learned from the linguistic data available to the child by

virtue of the lack of exposure to the crucial examples, and so had to be

attributed to the bias of the language acquisition model. Contra this claim,

Pullum & Scholz (2002) suggest that careful examination of the linguistic

data to which children are exposed reveals that it is far richer than poverty-

of-stimulus theorists suggest, finding attested examples of auxiliary fronting

of the sort previously assumed to be absent.
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Further, even if the putatively crucial examples are absent, learning

might still be possible. Scholz & Pullum (2006), citing work by Lewis &

Elman (2002) observe that when important facts concerning the relative

distributional frequency of certain interrogative forms are factored into the

input data, appropriate generalizations concerning English question forma-

tion can be predicted by straightforward ML inference techniques.

Clark & Eyraud (2006) propose an algorithm for learning a context-free

grammar that handles auxiliary fronting, and sequences of auxiliaries and

modals correctly, where this algorithm can produce the rules of the grammar

on the basis of a very small set of positive data. Here, the only bias is the

allowance for the possibility of hierarchical structure implicit in the choice of

context-free grammars. Whether this bias is language-specific or not is con-

troversial ; in any case, even if thought to be language-specific, it is quite weak.

Indeed, the mere possibility of expressing hierarchical structure in a

grammar does not guarantee its utility. Nonetheless, Perfors et al. (2006)

demonstrate that the posterior probability of a simple hierarchical grammar

exceeds that of a regular (that is, non-hierarchical) grammar of similar

coverage. This again ‘suggests that there may be sufficient evidence in the

input for an ideal rational learner to conclude that language is structure-

dependent without having an innate language-specific bias to do so’.

To summarize the digression, claims that the data available to a language

learner are missing crucial instances (negative data, critical pairs) may be

premature. Nonetheless, as noted above, our claim about the potential

for ML methods to clarify the status of poverty-of-stimulus arguments is

independent of the exact nature of the evidence.

It is important to distinguish poverty-of-stimulus from other sorts of ar-

guments that might be advanced in favor of a particular theory of grammar.

One might, for example, argue that a proposed system of grammar provides

the best theory for capturing the syntactic (and other grammatical) relations

exhibited by phrases and sentences in a language, or across languages. Such a

theory is motivated by its coverage of the observed properties of a language

or a set of languages.7 Alternatively, one might argue for a given theory of

grammar on the basis of consistency with psycholinguistic results concerning

adult processing of language. However, the components of the theory need

not be included in the bias of the language acquisition model unless they

cannot be projected from the input data on the basis of a weaker bias. It is

necessary to motivate a claim of irreducibility of this sort through indepen-

dent (non-)learnability evidence for the conditions of the grammar.

[7] Achieving wide coverage descriptive adequacy for the generalizations of a theory of
grammar is, in general, far more difficult than is often assumed. Postal (2004) shows that
many (perhaps most) of the conditions and constraints that have been proposed at one time
or another as elements of UG admit of substantial counter-evidence.
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3. RE V I E W O F M A C H I N E L E A R N I N G

Engineering-oriented computational linguistics is the study of methods for

the construction or improvement of useful artifacts that manipulate natural

language. Examples of such artifacts include speech recognizers, machine

translation systems, natural-language interfaces to databases or software

systems, and information retrieval systems.

A relatively standard approach has emerged for dealing with many of the

problems that arise in this area. A phenomenon is characterized as a function

from some inputs to outputs : speech signals to natural-language transcrip-

tions (speech recognition), English sentences to their labeled bracketings

(parsing), French sentences to English translations (machine translation),

Hebrew text to Hebrew text annotated with vowel diacritics (diacritic resto-

ration), and so on. A large sample (corpus) of the function is collected,

consisting of sampled inputs with corresponding outputs. The corpus is

taken as a benchmark of correctness for determining the function. It is

divided into two subsets, a TRAINING SET and a TEST SET.

A parameterized model characterizing a HYPOTHESIS SPACE of possible

functions is designed. A LEARNING ALGORITHM is applied to select one instance

of this space by setting the parameters on the basis of the training set. The

particular instance that is selected defines the learned function.8

The success of learning is measured by testing the function on the test set.

To the extent that the outputs of the learned function resemble the test

samples’ annotated outputs, the learning algorithm has successfully gen-

eralized the training samples. Resemblance can be specified in various ways.

If we require identity between the output of the learned function and the

benchmark, the percentage of the test set for which identity does not hold

is the ERROR RATE. This condition gives a particularly stringent metric of

similarity. More liberal notions than strict identity are frequently invoked

to obtain more realistic measures of the similarity between the learning

algorithm’s outputs and the training set gold standard. The details are

inessential.

Suppose, for example, that the phenomenon to be characterized is English

grammaticality. It can be characterized as a function from strings to an

output bit that specifies whether the string is or is not grammatical. A corpus

of such a function might, in general, be difficult to acquire, but a sample of

positive instances can be easily generated by taking a corpus of English text.

All the elements are strings that map to the ‘grammatical ’ bit value. We

use this corpus as the training set ; other examples of grammatical and

ungrammatical text can then serve as a test set.

[8] The model might incorporate weak or strong bias, and the algorithm might be quite general
or highly task-specific, in theory. However, most work to date has proceeded conservatively
along these lines, adding biasing structure only grudgingly and using standard statistical
learning techniques, less for principled reasons than for algorithmic simplicity.
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There are many possible models and learning algorithms that we could use

to learn this function. One particularly simple one is the n-th order markov

model, discussed, inter alia, by Shannon (1948). A probability distribution

over the strings of a language can be characterized as the product of con-

ditional probabilities :

P(w1 � � �wc)=
Yc

i=1

P(wijw1 � � �wix1)

We can approximate these conditional probabilities by assuming that each

word is conditionally independent of those occurring n or more words earlier

given the intervening (nx1)-word context.

P(wijw1 � � �wix1) � P(wijwixn+1 � � �wix1)

We then take the space of possible functions to be those characterized by

a parameter for each such conditional probability, one for each n-gram

(sequence of n words) in the language, together with a single threshold

probability to differentiate strings as grammatical (above the threshold) or

ungrammatical (below the threshold). In particular, we associate with each

n-gram w1_wn the probability that its final word wn occurs in the context of

the initial nx1 words. This probability P(wn | w1 _ wnx1) can be estimated

from the training corpus in many ways, most simply by the MAXIMUM

LIKELIHOOD ESTIMATOR (MLE):

P(wnjw1 � � �wnx1) �
c(w1 � � �wn)

c(w1 � � �wnx1)
,

where c(w1 _ wk) is the count in the training sample of occurrences of the

k-gram w1 _ wk. The probability of a new sentence can then be estimated

by multiplying these conditional probabilities for each of the overlapping

n-grams in the sentence, and the output bit can be determined by

thresholding this probability. Such a reduction of grammaticality to suf-
ficient probability is appealing in its simplicity even if dramatic in its naivete.

An apparent problem with this approach, noted as early as Syntactic

structures (Chomsky 1957), is that it inherently fails to distinguish between

sentences that are ungrammatical and those that are infelicitous. The two

strings

(1) Colorless green ideas sleep furiously.

(2) Furiously sleep ideas green colorless.

likely have identical estimated probabilities (or at least did before 1957)

for any n-gram MLE estimated model. For n=1, they contain the same

unigrams, hence the same product. For n>1, they each contain at least one

n-gram (and perhaps more) that would be unattested in any (pre-1957)

training corpus. The MLE estimate for the probability of such unattested

n-grams is 0, making the product probability for both sentences 0 as well,
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and therefore identical. Thus, there is no value for n for which such nonsense

sentences and non-sentences can be distinguished.

This may be, and in Chomsky’s case was, taken to be an argument against

the possibility of statistical learning of grammaticality judgments. Chomsky

(1957: 17, fn. 4) states:

One might seek to develop a more elaborate relation between statistical

and syntactic structure than the simple order of approximation model we

have rejected. I would certainly not care to argue that any such relation is

unthinkable, but I know of no suggestion to this effect that does not have

obvious flaws. Notice, in particular, that for any n, we can find a string

whose first n words may occur as the beginning of a grammatical sentence

S1 and whose last n words may occur as the ending of some grammatical

sentence S2, but where S1 must be distinct from S2. For example, consider

the sequences of the form ‘the man who _ are here ’, where _ may be

a verb phrase of arbitrary length. Notice also that we can have new

but perfectly grammatical sequences of word classes, e.g., a sequence of

adjectives longer than any ever produced in the context ‘I saw a – house’.

Various attempts to explain the grammatical-ungrammatical distinction,

as in the case of (1), (2), on the basis of frequency of sentence type, order of

approximation of word class sequences, etc., will run afoul of numerous

facts like these.

But in fact the argument shows no more than that the simple MLE n-gram

approach to the task fails. It has long been known that MLE estimates can

overfit, underestimating the probabilities of events rare or absent in the

training data. Methods for overcoming the problem go under the rubric of

SMOOTHING. Pereira (2000) points out that smoothing techniques, introduced

by Good (1953), permit the assignment of probability values to unobserved

linguistic events. When enriched with smoothing, statistical modeling of NL

learning can deal effectively with sparse data. Pereira shows that a smoothed

bigram model actually provides a FIVE ORDER OF MAGNITUDE difference in

probability for these two sentences.

Importantly, Pereira’s smoothed model has far fewer parameters than the

MLE bigram model. Fewer parameters are needed in this case by virtue of

the greater bias implicit in the model.9 In particular, the model instantiates

[9] One must beware of simplistic conflations of fewer parameters, more bias, and easier
learning. As we point out in section 5, the situation is quite a bit more complex, and the field
of computational learning theory has made significant progress in formally capturing a
notion of intrinsic difficulty of learning of different hypothesis spaces, for instance through
notions like VC dimension. In this particular example, the two models (MLE bigram and
class-based bigram) are sufficiently similar and the disparity in number so large that a crude
counting of the parameters is reasonable, but in general more sophisticated analysis is
necessary. Indeed, the characterization of intrinsic learning complexity for hypothesis
spaces is one of the insights of computational learning theory that is of potential value to
linguistic theory; we review it in section 5.
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the claim that the probability of a word depends not on the identity of the

prior word as in a bigram model but on its CLASS, and, contrary to

Chomsky’s (1957) claim, this model does predict a significant distinction in

probability between the two example sentences. Pereira uses the following

alternative bigram approximation:

P(wijwix1) �
X

c

P(wijc)P(cjwix1)

(Since instances of these further probabilities P(wi | c) and P(c | wi) are not

directly observed, we can no longer use simple observed frequencies, but

other general statistical procedures suffice for inducing these parameters.)

However, no stipulation is made as to the set of classes or the class of

particular words; these are learned from the training data simultaneously

with the class-based bigram parameters. The smoothed model manifests a

linguistically motivated bias, namely the uncontroversial claim that WORDS

FORM DISTRIBUTIONAL PATTERNS BY VIRTUE OF FALLING INTO CLASSES. The sur-

prising fact is that such an impoverished bit of additional bias has such far-

reaching consequences for a learning method to capture important linguistic

phenomena.

There are three lessons here. First, the inapplicability of one weak-bias

learning method does not rule out all such methods. Though MLE n-grams

cannot distinguish the two sentences, little additional bias is needed for a

learning method to achieve this effect, and that bias seems hardly language-

specific.

Second, the applicability of a weak-bias learning method does not

guarantee its general adequacy. To forestall confusion, we emphasize that

thresholded smoothed n-gram models of the type Pereira uses in his example

are completely implausible as a model of language on many grounds –

empirical coverage, descriptive complexity, appropriateness for interpret-

ation, among others. No one would argue that they can completely charac-

terize grammaticality. The inadequacy of the model is immaterial to our

point, which is simply to show that there is sufficient information in

the corpus of data to learn a distinction between these sentences that are

putatively indistinguishable without language-specific bias.We must look

for evidence for the language structure for the sentences in question from

some other source. But this case does indicate that information-theoretic

approaches to modeling grammar are not vulnerable to the simple argu-

ments for rich innate structure that have been widely accepted in the

linguistics literature for the past forty-five years.

Finally, and most importantly, all machine learning methods introduce

bias. Even the n-gram model, paradigmatic of a weak-bias language model-

ing method, makes the assumption that words more than n words apart are

conditionally independent. Indeed, without bias, there is no generalization,

and generalization is the OBJECT of learning.
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4. WE A K L Y B I A S E D M A C H I N E L E A R N I N G M E T H O D S F O R P A R S I N G

To illustrate our claim that machine learning methods can, in principle,

provide linguistic insight, we consider parsing, the recovery of the hier-

archical syntactic structure of a sentence. Discussing a specific natural-

language task allows us to highlight the important properties of machine

learning that bear on the issues at hand: the distinction between supervised

and unsupervised methods, the implicit grounding of all methods in a

linguistic theory however impoverished, and the explicit ability to determine

appropriate generalization to new data.

To test if a system (including a person) can parse, we need to compare the

performance of the system against correct parses of sentences. Of course,

what constitutes a correct parse is a theory-relative notion. For concreteness,

we use a proxy for real parsing, namely, replicating the parses of the Penn

Treebank (Marcus 1993). Recall that machine learning methods involve

inducing an approximation of a function. The function at hand here, then, is

the function from a string to its syntactic analysis as given in the Treebank.

We use the Treebank itself for both training and testing samples.

As we noted in section 3 we can use different similarity measures to

evaluate the performance of a learning algorithm, in this case a grammar

induction system for parsing, against a gold standard. Requiring only con-

sistency of bracketing of the parser’s output relative to the annotated struc-

ture of the corpus yields the NON-CROSSING-BRACKETS RATE metric. Many

other possibilities have been proposed (Goodman 1996). We will measure the

quality of the approximation via F-MEASURE, a weighted combination of

precision and recall over constituents (labeled brackets).10 Such a measure

tracks how often the reconstructed brackets are correct and how often the

correct brackets are reconstructed, with performance ranging from zero

(worst) to one (best), and often expressed as a percentage.11

If the observations on which the system is trained include input (the

sample strings) annotated with the intended parse (that is, their benchmark

output structure), the learning task is SUPERVISED. (One can imagine a

[10] In particular, we report values of the F1-measure here, in which precision and recall are
equally weighted.

[11] Some critics of the view that machine learning can provide a viable model of human
grammar acquisition have argued that an ML system learns only from a corpus of gram-
matical sentences and so is limited to recognizing well-formed phrases. See, for example,
Carson Schutze’s contributions of 20 April and 5 May 2005, on the LINGUIST LIST, to
the discussion of Richard Sproat and Shalom Lappin, ‘A challenge to the Minimalist
community’, LINGUIST LIST, April 5, 2005. This claim is misconceived. The parser that an
ML system produces can be engineered as a classifier to distinguish grammatical and
ungrammatical strings, and it can identify the structures assigned to a string under which
this distinction holds. Such a classifier can also be refined to provide error messages that
identify those properties of an unsuccessful parse that cause a sentence to be identified as
ungrammatical.
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supervisor or teacher telling the student the right answer for each training

problem.) When the observations include only the input, but not the output,

the learning is UNSUPERVISED.

4.1 Supervised learning of parsing

The space of all parameter settings in the model for grammar induction

determines the hypothesis space of learnable parsers. This space determines

the expressivity of the learned model and so specifies an important part of its

bias. In the linguistics literature, the bias induced by the parameter structure

of the grammar has been thought of categorically, that is, as governing what

is or is not a possible language. It is also quite possible, and frequently

beneficial, to introduce distributional bias into the model, that is, the speci-

fication of an a priori probability distribution over the hypothesis space, and

hence over the possible languages. (We will make this notion of distri-

butional bias more precise in section 5.4.)

The notion of distributional bias, in contrast to categorical bias, has not

been widely used in linguistics. A distributional bias does not directly limit

the class of languages that are learnable, but rather affects the likelihood with

which a particular language will be chosen to generalize the observations (or

the amount of evidence required to select a particular language). A simple

example may clarify the idea. Suppose we want to learn how many sides are

on a multi-sided sequentially numbered die based on observations of rolls.

We select an infinite hypothesis space of possibilities in which all die sizes are

possible. One model might assume that all numbers of sides are equally likely

a priori ; another might assume that dice tend to have about six sides, with

more or fewer being less likely the farther from this norm. Then, after seeing

a certain set of observations, say 2, 4, 1, 3, 2, the most likely number of sides

under the first (uniform) model would be 4, but under the second (non-

uniform model) it might be 5. Categorical bias can be seen as a limit case of

distributional bias where the distribution assigns zero probability to certain

elements of the hypothesis space.

Indeed, the two kinds of bias can be measured on the same scale, re-

presenting the dimensionality of the learning problem. Distributional bias

can be effective in allowing learning, even without restricting the class of

possible learned languages. This is in contrast to the assumption, sometimes

found in the linguistics literature, that without a categorical constraint on the

class of languages, perhaps even reducing it to a finite set, learning cannot

succeed.

By way of example of the weak linguistically-oriented bias found in

current engineering-oriented models, and the power of distributional bias,

we consider the sequence of parsers built by Collins (1999). As described

above, the problem at issue is the reconstruction of a syntactic analysis from

samples. We must assume, of course, that strings have structure; this is
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implicit in the statement of the problem. Beyond that, all else is bias. For

instance, we can assume that the probabilities for the expansion of a node are

completely random, making no assumptions as to their distribution. In that

case, no generalization from the training data is possible. In order to get

started, let us assume that the constituents that we see are representative of

the function outputs in at least the following way: the phrase types (non-

terminal labels N ) are generated according to a fixed distribution P(N ). With

this assumption, we can use the training data to learn an approximation of

the distribution in a variety of ways. The maximum likelihood estimate is

merely the observed probability in the training sample. Generating trees in

this way corresponds to selecting a random tree structure and decorating it

with labels according to this fixed distribution. This would undoubtedly

work better than nothing at all, though not much.

The normal starting point for statistical parsing models, therefore, con-

ditions the probability of a child non-terminal sequence on that of the

parent. We have conditional probabilities of the form P(X1 _ Xn|N) for each

non-terminal N and sequence X1 _ Xn of items from the vocabulary of the

grammar (the non-terminals plus the words of the language). We also need a

probability distribution over the label of the root of the tree Ps(N). We can

then learn these parameters from a training corpus, perhaps by MLE.

By structuring the model in this way, we are assuming that the trees were

generated by a probabilistic context-free grammar (PCFG). The conditional

probabilities P(X1 _ Xn|N) correspond to probabilistic parameters that

govern the expansion of a node in a parse tree according to a context-free

rule NpX1 _ Xn. (Because the languages generable by context-free gram-

mars are limited, the hypothesis space of this model must be limited as well ;

this part of the bias is categorical.) Such models work poorly, if passably,

as statistical parsers. Systems built in this way show F-measures in the low

0.7 range, that is, there is a match of about 70% between the constituents

of the gold standard and those of trees that the parser generates for the

training data.

To improve performance, we need to add either further expressivity or

additional bias by effectively reducing the dimensionality of the problem,

and so removing degrees of freedom in hypothesis selection. We will do both.

Further expressivity is needed in part because the context-freeness assump-

tion implicit in the model fails to hold – the probability of a child sequence is

manifestly not independent of everything but the parent label. We can

further articulate the distributions in various ways. Collins does so by con-

ditioning on lexical material, introducing the notion of a head word, and

replacing non-terminals with non-terminal/head pairs in the model. The

probability distributions are now of the form Ps(N/h) and P(X1/h1 _ H/

h _ Xn/hn|N/h).

Because this dramatic increase in dimensionality makes the function more

difficult to learn (prone to overfitting), we assume that these numerous
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conditional probabilities themselves have further structure, in particular,

that the head constituent is conditioned only on the parent, and each sibling

of the head constituent is conditioned only on the head, the parent, and the

side of the head on which it falls. These further independence assumptions

allow the probabilities P(X1/h1 _ H/h _ Xn/hn|N/h) to be computed as the

product of a far smaller and simpler set of conditional probabilities. In this

way additional bias is introduced.

Bias could have been introduced through further categorical constraints,

by allowing only certain context-free rules that follow from detailed

linguistic analysis (equivalently, reducing the number of conditional proba-

bility parameters). Instead, we adopt a more conservative approach here (as

is characteristic of engineering-oriented CL), allowing all such rules, but

adjusting the prior distribution of probabilities over them through the

structure of parameters of the previous paragraph.

By proceeding in this way it is possible to construct models with

F-measure performance of approximately 88% (Collins 1999), with more

recent work improving this further to approximately 91% (Charniak &

Johnson 2005). This level of performance is quite impressive, if not yet at the

level of human parsing. Nonetheless, one might wonder to what extent these

models can be characterized as weak-bias methods. They certainly import

structure consistent with our understanding of language. The design of

the models they use encodes the requirements that sentences have hier-

archical (tree) structure, that constituents have heads which select for

their siblings, and that this selection is determined by the head words of

the siblings. However, these conditions on language do not express the

complex view of universal grammar assumed in much of current linguistic

theory. One might have thought that it is necessary to posit a parameter

governing whether complements precede or follow their heads in a given

language. In fact, no such parameter is part of Collins’ model, which still

correctly generalizes the relevant phenomena, while, in principle, allowing

analyses in which head-complement order varies in linguistically unlikely

ways.

The point here is that by structuring a statistical parsing model, one is

making claims with linguistic import. But current ML parsers demonstrate

the fact that relatively weak claims may still yield surprisingly strong

performance.

At this point one might object that supervised learning has limited

relevance to the problem we are considering, given that the features and

structures that the machine learner acquires are already marked in the

training data. In what sense, then, can supervised learning claim to induce a

classifier for the recognition of complex properties from data through weakly

biased models if the data is already annotated with these properties? There

are two points to make in reply to this objection. First, as we have already

noted, recent psycholinguistics studies of child language acquisition suggest

S H A L O M L A P P I N & S T U A R T M. S H I E B E R

408



that negative evidence plays a significant role in first language learning.

This evidence turns the language learning problem into a species of

supervised learning. Second, current research on unsupervised learning has

achieved very promising results for parsing using unsupervised ML methods.

We will briefly describe some of this work next.

4.2 Unsupervised learning of parsing

In unsupervised learning the training corpus is not annotated with the

structures that the system is intended to acquire. Instead the learning algor-

ithm uses distributional patterns and clustering properties of more basic

features in the training data to project a classifier that recognizes the objects

to be learned. This is a considerably more difficult task than supervised

learning, as it requires identification of a class of target objects without the

benefit of prior exposure to explicit pairings of feature patterns and target

objects in the input data.

Advocates of a poverty-of-stimulus argument for a strong learning bias

encoded in a rich set of parameterized linguistic principles have generally

characterized language acquisition as an unsupervised learning problem of a

particularly stringent variety. If it turns out that this problem can be solved

by an ML model with comparatively weak bias, then this result would pro-

vide insight into the nature of the initial conditions (UG) that are sufficient

for language acquisition, even if one discounts the negative evidence that

may be available to the human learner.

Early experiments with unsupervised grammar induction (like those

reported by Carroll & Charniak 1992) did not yield encouraging results.

However, recent work has shown significant progress. The grammar induc-

tion system proposed by Klein & Manning (2002) is an unsupervised method

that learns constituent structure from part of speech (POS) tagged input by

assigning probability values to sequences of tagged elements as constituents

in a tree. They bias their model to parse all sentences with binary branching

trees, and they use an Expectation Maximization (EM) algorithm to identify

the most likely tree structure for a sentence. Their method relies on

recognizing (unlabeled) constituents through distributional clustering of

corresponding sequences in the same contexts, where a tree structure is

constrained by the requirement that sister constituents do not overlap (have

non-null intersections of elements).

The Klein & Manning procedure achieves an F-measure of 71% on Wall

Street Journal : (WSJ) text, using Penn Treebank parses as the standard of

evaluation. This score is impressive when one considers a limitation that the

evaluation procedure imposes on their system. The upper bound on a poss-

ible F-measure for their algorithm is 87% because the Penn Treebank assigns

non-binary branching to many constituents. In fact, many of the system’s

‘errors ’ are linguistically viable parses that do not conform to analyses of the
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Penn Treebank. So, for example, the Treebank assigns flat structure to NPs,

while the Klein & Manning procedure analyzes NPs as having iterated

binary branching. Parses of the latter kind can be motivated on linguistic

grounds.

One might object to the claim that Klein & Manning’s parser is genuinely

unsupervised on the grounds that it uses the POS tagging of the Penn

Treebank as input. They run an experiment in which they apply their pro-

cedure to WSJ text annotated by an unsupervised tagger, and obtain an

F-measure of 63.2%. However, as they point out, this tagger is not particu-

larly reliable. Other unsupervised taggers, like the one that Clark (2003)

describes, yield very encouraging results, and outputs of these taggers might

well permit the parser to perform at a level comparable to that which it

achieves with the Penn Treebank tags.

Klein & Manning (2004) describe a probabilistic model for unsupervised

learning of lexicalized head dependency grammars. The system assigns

probabilities to dependency structures for sentences by estimating the like-

lihood that each word in the sentence is a head that takes a specified sequence

of words to its left and to its right as argument or adjunct dependents. The

probabilities are computed on the basis of the context in which the head

appears, where this context consists of the words (word classes) occurring

immediately on either side of it. Like the constituent structure model, their

dependency structure model imposes binary branching as a condition on

trees. The procedure achieves an F-measure of 52.1% on Penn Treebank test

data. This result underrates the success of the dependency model to the

extent that it relies on strict evaluation of the parser’s output against the

dependency structures of the Penn Treebank, in which NPs are headed by

Ns. Klein & Manning report that in many cases their dependency parser

identifies the determiner as the head of the NP, and this analysis is, in fact,

linguistically viable.

When the dependency system is combined with their unsupervised con-

stituency grammar, the integrated model outperforms each of these systems.

In the composite model the score for each tree is computed as the product of

the individual models that the dependency grammar and the constituency

structure grammar generate. This model uses both constituent clustering and

the probability of head dependency relations to predict binary constituent

parse structure. It yields an F-measure of 77.6% with Penn Treebank POS

tagging. It also achieves an F-measure of 72.9% with an unsupervised tagger

(Schütze 1995).

This work on unsupervised grammar induction indicates that it is possible

to learn a grammar that identifies complex syntactic structure with a

relatively high degree of accuracy using a model containing a weak bias,

specifically the assumption of binary branching, a non-overlap constraint for

constituents, and limited conditions on head argument/adjunct dependency

relations.
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A criticism might be raised that unsupervised learning does not provide a

credible model of human language acquisition because children acquire their

language through semi-supervised learning in rich non-linguistic contexts.

Neither supervised nor unsupervised learning from corpora expresses this

task. While it is clearly true that information from extra-linguistic context

plays a crucial role in human language acquisition, the fact that experiments

on unsupervised grammar induction from corpora are beginning to achieve

good results is highly relevant to the issue that we are addressing here. By

considering a more restricted learning problem in which severer conditions

are imposed on input and induction than apply in child language learning,

these experiments establish the computational viability of weak-bias models

for the human case, where additional sources and varieties of learning input

are available.

Another criticism that might be raised is that anything short of 100 percent

success fails to establish the credibility of either a supervised or an un-

supervised ML grammar induction device taken as a model for human

language acquisition. To achieve successful coverage of the data not handled

by the system one might require entirely different sorts of learning principles

than those that the system applies. Taken to its ultimate conclusion this

objection also undermines poverty-of-stimulus arguments for a richly ar-

ticulated UG. Unless a theory of strong-bias UG accounts for all of the

properties of natural language and the acquisition process, then it is subject

to the same skepticism. Linguistic theories that leave some of this data

unexplained are in the same position as ML systems that do not parse all of

the corpora on which they are tested. The objection invokes the possibility

that grammar induction, and, in fact, language acquisition in general, is non-

monotonic in that it might consist of disjoint components defined by entirely

distinct sets of learning methods. In the absence of significant evidence

for this possibility, the objection is not compelling. As Hume would say, it

admits of no answer, but produces no conviction.

5. IN S I G H T S F R O M C O M P U T A T I O N A L L E A R N I N G T H E O R Y

We have argued that empirical results in machine learning applied to natural

language can provide linguistic insight. In this section, we describe how

results from the theoretical branch of machine learning, COMPUTATIONAL

LEARNING THEORY, can inform linguistic theorizing as well.

Computational learning theory provides precise mathematical frame-

works for the analysis of learning problems. The development of this theory

has been central in the analysis of existing algorithms used in machine

learning and in the development of new learning algorithms. Learning theory

has provided profound insights into what can and cannot be learned, and the

resources (for example, in terms of computation or the number of training

examples) required for learning under different assumptions.
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Arguments of a learning-theoretic nature are sometimes seen in linguistic

theorizing, as for instance claims that restricting the set of possible languages

to a finite number allows language to be learned, or that eliminating a

linguistic parameter makes the system more learnable, or that the early

learning theory results of Gold (1967), showing the difficulty of learning

languages under certain assumptions, demonstrate the need for strong-bias

learning.

In this section we argue that recent results from learning theory are highly

relevant to language acquisition questions in general, and cast light on these

claims in particular. Specifically, we describe how learning theory suggests

alternatives to the P&P model of UG. We will emphasize the following

conclusions that can be drawn from our current understanding of compu-

tational learning theory:

. More recent learning frameworks – PAC/VC, online, and Bayesian

learning – should be considered as serious alternatives to Gold’s frame-

work. These methods typically consider rates of convergence, not just

convergence in the limit. They allow models of learning in the presence of

noise. They have been far more successful in practice when analyzing and

developing machine learning methods within applied fields.
. Naive counting of parameters is not a useful guide to difficulty of learning.

It is possible to learn in infinite dimensional spaces, given the right learn-

ing bias or parameter estimation method. Conversely, some finite spaces

are too complex (large) for learning with a reasonable number of training

examples.
. Similarly, even for finite-dimensional spaces, comparing the number of

parameters is not a reasonable method for evaluating the difficulty of

learning.
. Learning bias can be embodied both in the definition of the hypothesis

space and in the learning algorithm. Linguistic arguments have tradition-

ally concentrated on the former alone.
. There are non-trivial issues in learning of finite hypothesis spaces : for

example, how rates of convergence depend on the size of the hypothesis

space, and how a distributional prior can be defined over elements of the

hypothesis space.

In order to provide backing for these points, we introduce computational

learning theory approaches, describe PAC/VC learning in finite and infinite

hypothesis spaces, and discuss the crucial role of distributional bias in

learning.

5.1 Computational learning theory approaches

Recall that we characterize a phenomenon to be learned as a function from

inputs to outputs. A learning method proposes a hypothesis that is thus such
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a function. As outlined earlier, a learning approach consists of two high-level

components :

. A HYPOTHESIS SPACE: The set of functions that the learning approach will

consider. For example, in the P&P framework, the hypothesis space would

be the set of all possible grammars under UG. If there are n binary par-

ameters, and these parameters can be set independently from each other,

the hypothesis space is finite and is of size 2n. In the remainder of this

paper we will use H to denote a hypothesis space.
. A LEARNING FUNCTION: A function that maps a sequence of training

examples to a member of the hypothesis space H. We will use LEARN to

denote this function.

We can imagine that the learner proceeds by observing a training example

o1 and applying the LEARN function to it, generating a first hypo-

thesis h1=LEARN(o1). Upon seeing the next observation o2, the learner

hypothesizes h2=LEARN(o1, o2). In general, after n observations, the

learner hypothesizes hn=LEARN(o1,_,on). Each such hypothesis is a function

drawn from the hypothesis space H, and represented by a setting of the

parameters.

Given these definitions, the following issues are crucial in determining

whether learning is successful under a particular choice of H and LEARN:

. CONVERGENCE IN THE LIMIT : In the limit, as the number of training examples

goes to infinity, will the learning method ‘converge’ to the correct member

of H?
. RATE OF CONVERGENCE: If the method does converge, how quickly will it

converge, in terms of the number of training examples required, before the

optimal member of H is settled on?

We argue that both of these questions are critical when assessing the

plausibility of a proposal for language acquisition. Convergence in the limit

is a minimal requirement for any learning method. The rate of convergence is

also important, as it is uncontroversially the case that the number of utter-

ances available to a human language learner is limited.

The convergence results for a learning approach depend on (in addition

to the definitions of H and LEARN) two further definitions: (i) a precise

definition of convergence; and (ii) the assumptions that are made about the

process generating the training examples. Learning in the limit (Gold 1967)

was one of the earliest proposals for how to frame a theory of learning that

follows this general approach. Since then several other frameworks have

been introduced, some prominent ones being VC theory (Vapnik &

Chervonenkis 1971) ; PAC learning (Valiant 1984) ; online learning (see Blum

1996 for a survey) ; and Bayesian methods (see Berger 1985 for a survey).

These methods differ significantly from Gold’s framework, both in terms of

their definitions of convergence and the assumptions they make about how
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training examples are generated. In practice this has led to the development

of definitions of H and LEARN significantly different from those considered

within Gold’s approach.

In the framework of Gold (1967), the sequence of training examples can be

any sequence defined by a Turing machine – this sequence is unknown to the

learner. Convergence is defined as the very strict criterion that at some point

in any such sequence LEARN must converge to a state where it continually

predicts the correct member of H.

In PAC/VC learning, by contrast, quite different definitions of conver-

gence and data generation are used. A central assumption is that there is

some probability distribution D over examples in the domain, and the

training set is a sample of points drawn randomly from this distribution.

A notion of convergence parameterized by two factors, numbers e and d
between 0 and 1, is defined with respect to this distribution. Informally

speaking (e,d)–convergence means that with high probability (1xd), the

learning method generates a hypothesis that is close to (within e of) the ideal,

that is, the hypothesis is PROBABLY APPROXIMATELY CORRECT (PAC).12

Results from the literature in PAC/VC learning give bounds on the number of

training examples required for (e,d)–convergence, or show that (e,d)–

convergence is impossible with a finite training sample for certain

definitions of H and/or LEARN.

The PAC notion of convergence is quite natural in the context of language

learning. Neither a guarantee of convergence (d=0) nor exact convergence

(e=0) are necessary or even plausible for human language acquisition. The

noisiness of actual linguistic behavior, especially at the margins, means that

distinguishing between convergence to an e of zero versus non-zero may not

even be empirically possible.

Whether convergence is guaranteed within the PAC/VC framework will

depend critically on the choice of the hypothesis space H and the learning

function LEARN. In effect, the choices of H and LEARN implement a sub-

stantial bias in the definition of a learning method. In the next sections we

give a survey of different proposals for the definition of H and LEARN, in

each case discussing the consequences for learnability within the PAC/VC

framework.

[12] More formally, for any member h of H, we define ERROR(h) to be the probability that h
makes an error on a randomly drawn example from the distribution D. Define L* to be the
lowest value of ERROR(h) for any member of H. We would like LEARN to return a member of
H whose value for ERROR(h) is as close to L* as possible. Under these definitions,
(e,d)–convergence means that with probability at least 1xd the hypothesis returned by
LEARN will have ERROR(h)fL*+e. The statement ‘with probability at least 1xd ’ refers to
probability with respect to the random choice of training examples from D. Intuitively, this
statement means that there is a small probability d, that the training sample will be a ‘bad’
one where LEARN fails to return a good member of H.
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5.2 PAC/VC learning with finite hypothesis spaces

First, we consider results for PAC/VC learning when the hypothesis space H
is finite. For now we assume a particularly simple definition of LEARN: We

take LEARN to return the member of H that makes the smallest number of

errors on the training sample. This definition of LEARN is often referred to as

EMPIRICAL RISK MINIMIZATION (ERM; Vapnik 1998).

Within the PAC/VC framework, for finite hypothesis spaces the ERM

method always leads to a learning method that converges in the limit. The

rate of convergence depends directly on the size of the hypothesis space H.

More precisely, for fixed e and d, the number of training examples required

scales linearly with the LOGARITHM of the number of functions within H.

Within the P&P framework, assuming n binary parameters, the size of the

hypothesis space is |H|=2n ; the number of training examples required

therefore scales linearly with log |H|=nlog2.13 The linear dependence on log

|H| as opposed to |H| has important consequences. If the number of training

examples required scaled linearly with 2n then learning within the P&P ap-

proach for any significantly large value of n would be completely infeasible.

The most important point here is that the SIZE OF THE HYPOTHESIS SPACE is

the central factor underlying rate of convergence of the learning method.

Different hypothesis spaces that have the same size should require roughly

the same number of training examples for learning. This is a very useful

guideline when considering the viability of alternatives to the P&P approach.

As one example, in Optimality Theory each hypothesis is defined by a

ranking of c constraints. The size of the hypothesis space in this case is

|H|=c ! ; this leads to the bound log |H|fclogc. When comparing a pro-

posal within the P&P framework with n parameters to an OT proposal with

c constraints, we would expect the complexity of learning to be roughly

equivalent in the two cases if nlog2Bclogc. In practice, logc grows slowly as

a function of c, so that n and c can be the same order of magnitude.

As a less familiar example, albeit one with clear potential applications,

consider SPARSE PARAMETER REPRESENTATIONS. As in the P&P approach, as-

sume that each hypothesis is defined by the setting of n binary parameters,

but where only a small number, k, of these parameters are ever set to 1 rather

than 0 in the hypothesis returned by LEARN. (Equivalently, we could assume

that the remaining nxk parameters take some default value.) In this case the

size of the hypothesis space is n !
(nxk) ! k !

fnk: The number of training examples

required scales linearly with log |H| fklogn. The striking property of this

representation is that the number of training examples, while linear in k,

depends linearly on logn rather than n. This means that learning is feasible

for very large values for n, assuming that k is relatively small. To illustrate

[13] To be exact, results from PAC learnng suggest that at most m= log jHjx logd
"2

training ex-
amples are required for (e,d)–convergence for any finite hypothesis space H.
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this, consider a P&P model with n=200 parameters, and a hypothesis space

which is therefore of size 2200. In the sparse representation model, values of

k=10 and n=220 � 1,000,000 lead to a hypothesis space of size less than 2200.

That is, learning in a space defined by 1,000,000 parameters is no harder than

one defined by 200 parameters, if in the former case we know that only 10 of

the parameters take non-default values. Sparse parameter representations

thus provide a simple example showing that naive counting of parameters is

not a reasonable measure of the complexity of learning.

5.3 PAC/VC learning with infinite hypothesis spaces

Now consider the case where the hypothesis space H is infinite. In particu-

lar, we will assume that each member of H is associated with n REAL-VALUED

parameters. Thus the hypothesis space is uncountably infinite. In this case,

the results of the previous section are clearly not applicable. We will again

consider convergence results for the ERM learning method, where LEARN

simply picks the hypothesis h with the smallest number of errors on the

training sample.

In the ERM method for infinite hypothesis spaces, a measure called the

VC-DIMENSION (Vapnik 1998) is critical in determining whether the learning

method converges in the limit, and also in determining the rate of conver-

gence. The VC-dimension of a hypothesis space H is defined as the largest

value of m such that there is a training sample of size m that is SHATTERED by

H. A training sample is shattered by a hypothesis space H if for each of the

2m possible labelings of the sample, there is a hypothesis in H that assigns

that labeling.14 For example, suppose that the function to be learned maps

points in two-dimensional space onto 0 and 1. Such a function assigns a

single bit to each point in the real plane. A hypothesis space is a subset of all

such possible functions. It might, for instance, contain just those functions

that assign 1s to all points ‘northeast ’ or ‘southwest ’ of a designated point

p in the plane, and 0s to all points in the other two quadrants. Each element

of this ‘northeast-southwest ’ hypothesis space is characterized by two real-

valued parameters, the two coordinates of the designated point p that

picks out the junction between the 1s quadrants and the 0s quadrants.

This hypothesis space (by virtue of its impoverished expressivity) has a

VC-dimension of 2, because it shatters two points, but not three, as depicted

in figure 1.15

A hypothesis space H has infinite VC-dimension if for any value of m,

there is some training sample of size m that is shattered by H. Given these

[14] We assume here that the function to be learned has a range of 2, that is, it assigns a single
bit to each input.

[15] As an exercise, the reader might want to verify that a ‘northeast’ hypothesis space, which
labels points as 1s only in the northeast quadrant, has VC-dimension of 1.
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definitions, the following results hold: (i) the ERM method converges in

the limit if and only if the VC-dimension of the hypothesis space is finite ;

and (ii) the number of training examples required is roughly linear in the

VC-dimension of the hypothesis space.

There are a number of important points here. First, learning in infinite

hypothesis spaces with the ERM method is possible in some cases, more

precisely, in those cases where the hypothesis space has finite VC-dimension.

This in itself is a surprising result : intuition would suggest that infinite hy-

pothesis spaces might be too complex for learning to be successful. Second,

the VC-dimension will be highly sensitive to the precise definition of the

hypothesis space (in contrast to the results for finite hypothesis spaces, where

merely knowing the size of H was sufficient to characterize learnability). For

example, even though the ‘northeast-southwest ’ hypothesis space is infinite,

learning in this space converges quickly because its VC-dimension is low.

A simple linear (hyperplane) classifier with n parameters has VC-dimension

equal to n. The number of training examples will then scale linearly with

the number of parameters in the model. In contrast, it is possible to define

hypothesis spaces that have a single real-valued parameter, and yet have

(a)

(b)

(c)

Figure 1
The ‘northeast-southwest’ hypothesis space labels points in the northeast and south-
west (gray) quadrants defined by its single point parameter (shown as ‘*’) as 1, and 0 in
the other two (white) quadrants. (a) Two points in the two-dimensional space can be
labeled with all four possible labelings. (Here, we depict a labeling of a point as a 1 or 0
by showing the point as a ‘+ ’ symbol or ‘–’ symbol, respectively.) Adding a third
point in the configuration (b) cannot be labeled with the depicted labeling (a 0
surrounded by two 1s), because (c) any hypothesis that labels the outside points
properly captures the inside point. It can be verified that no set of three points can be
shattered by this hypothesis space. The hypothesis space thus shatters two points, but

not three. The VC-dimension of the space is therefore 2
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infinite VC-dimension and are therefore not learnable through the ERM

method. (Vapnik 1998 provides one such example.)

5.4 PAC/VC learning and distributional bias

Thus far we have considered a relatively simple definition of LEARN, based on

the ERM principle, where LEARN simply returns the member of H with the

smallest number of errors on the training sample. In this approach, the only

form of learning bias comes in the choice of H. We now consider a powerful

generalization of this method, where a DISTRIBUTIONAL BIAS over the members

of H can be used by LEARN.

We provide an example of this method for finite hypothesis spaces.

Consider the following definition of LEARN. In addition to H, we assume that

the learning algorithm has access to some probability distribution P(h) over

the members of H. The distribution P(h) can be arbitrary, the only restric-

tion being that it must be chosen independently of the training examples. We

now consider a modified definition of LEARN. The function LEARN returns a

hypothesis h in H that attempts to simultaneously minimize two factors: the

number of errors that the function makes on the training sample (as for

the ERM method), which we call ERRORk(h), and the negative log prob-

abilityxlogP(h) of the hypothesis. The former quantity is, as before, a

measure of how well the hypothesis fits the training sample. The latter

quantity is a measure of the ‘complexity’ of the hypothesis h, phrased in

terms of a penalty for choosing an unlikely h. When P(h) is 1, the penalty is 0

(since log1=0). As P(h) decreases to 0, the penalty increases to infinity.16

Intuitively, P(h) will assign an a priori bias towards choosing or not

choosing h in the learning process. In particular, a higher value of P(h)

reflects a stronger bias towards choosing h as the output of LEARN. As for the

ERM method, it can be shown that the method described above converges in

the limit. However, the analysis of the RATE OF CONVERGENCE is different from

that of the ERM method. If the correct hypothesis h has a relatively high

value for P(h) – in other words, if the a priori bias is well-tuned to the

learning problem in that it places high weight on the correct member of

H – then convergence can be substantially faster than that for the ERM

method with the same hypothesis space H. The choice of P(h) gives an

additional degree of flexibility in defining a learning bias for the function

LEARN WITHOUT CHANGING THE HYPOTHESIS SPACE H AT ALL, and this bias can

[16] As one example of minimizing both of these factors, LEARN might return the member of H
that minimizes

ERROR
0(h)+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x logP(h)

m

r
,

where m is the number of training examples.
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substantially increase the rate of convergence of the method, if the values for

P(h) are well chosen.

Similar methods can be used for infinite hypothesis spaces. In this case we

again identify each hsH with a vector of n real-valued parameters h1, _, hn.

Learning theory results for neural networks (Bartlett 1998) and support

vector machines (SVMs) (Cortes & Vapnik 1995) essentially suggest replac-

ing the factor xlogP(h) with the quantity
Pn

i=1 h2
i , which is the Euclidean

norm ||h||2 of the vector h. The function LEARN again picks a hypothesis that

minimizes a combination of two terms, but in this case the second term is a

function that penalizes high values for ||h||2.
A remarkable property of this method (at least for certain hypothesis

spaces, such as SVMs or neural networks) is that the number of training

examples required is linear in ||h||2, but is otherwise INDEPENDENT OF THE

NUMBER OF PARAMETERS n. This method thus takes advantage of distributional

bias in such a way that it is the LIKELIHOOD of the hypothesis (as defined by

||h||2) that determines the difficulty of learning it, not the complexity of its

representation.

5.5 PAC/VC learnability and distributions on training samples

While imposing a prior distributional bias on H can improve convergence

rates in PAC/VC-learning, it does not address an important limitation of this

framework with respect to natural-language grammar induction.17 Nowak

et al. (2002) point out that the set of finite and the set of regular languages are

not PAC/VC-learnable due to the fact that they have infinite VC-dimension.

This result follows straightforwardly for both cases. For the set of finite

languages, all possible assignments of Boolean values to the members of any

sample set of k strings (1 for membership in the language and 0 for exclusion)

will be covered by elements of the set of finite sets of strings. Hence any finite

sample string is shattered by the elements of H for finite languages.

Similarly, if H consists of the infinite set of possible Finite State Automata

(equivalently, the set of Finite State Grammars), then any sample set of

regular strings will be shattered by members of H. Therefore, the set of finite

languages and the set of regular languages are not PAC/VC-learnable. At

first blush, this may seem surprising, but with so few constraints from the

hypothesis space, generalization is simply impossible.

A possible solution to this difficulty is to impose an upper bound on the

size of finite languages and on the number of states in a possible FSA (rules

in a possible FSG). Nowak et al. (2002) observe that for any specified value

n, the set of finite languages of size n and the set of regular languages gen-

erated by FSAs with n states (FSGs with n rules) have finite VC dimension

[17] We are grateful to Alex Clark for invaluable discussion and advice on the issues dealt with
in this section.
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and so are PAC/VC-learnable. In fact, Shinohara (1994) shows that the set of

languages generated by context-sensitive grammars with n productions is

learnable in the limit in Gold’s sense.18

We can even choose the bound as an appropriate function of the number

of training examples. In a framework in which we attempt to converge on a

hypothesis as the number of training examples grows, this allows conver-

gence in the limit for arbitrary languages from these otherwise problematic

classes. A similar effect can be obtained by placing a prior probability over

the bound, effectively a prior on the size of the grammar.

Another natural way of dealing with this problem is to impose constraints

on the distribution of the samples to which the learner is exposed. On this

view the data available to a learner exhibits a distributional pattern deter-

mined by a grammar. Although the samples to which a learner is exposed are

randomly selected, they are taken from a particular probability distribution

on the strings of the target language. Clark & Thollard (2004) propose a

distributional sample bias for PAC learning of regular languages. They show

that if the data string distributions for regular languages are determined by

probabilistic FSAs corresponding to the target grammars that generate these

languages, then the set of regular languages is PAC-learnable. It seems

reasonable to generalize this approach to other types of grammars, like

context-free grammars (CFGs) and (mildly) context sensitive grammars

(CSGs).19 We would obtain the distributions on the training data necessary

to render the sets of languages corresponding to these grammars

PAC-learnable, from probabilistic versions of the target grammars. The

advantage of this approach is that it achieves PAC learnability not by

imposing an arbitrary cardinality restriction on the number of rules in the

grammars of H, but through constraints on possible distributions of the

training samples that bear a direct relation to the grammars that generate

this data.

5.6 Discussion

While we have concentrated on the PAC/VC framework, online learning

(Blum 1996) and Bayesian methods (Berger 1985) have many similarities.

Online learning does not make use of the assumption of a distribution D over

training and test examples, but nevertheless shares close connections with

[18] Scholz & Pullum (2002) cite Shinohara’s result to support their claim that natural-language
grammars are learnable even within the narrow strictures of Gold’s learning theory, given a
sufficiently large upper bound on the number of rules in the set of possible CSGs for natural
languages.

[19] See Clark (2006) for an application of this approach to a particular subclass of CFGs, the
class corresponding to the non-terminally separated languages.
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PAC/VC learning. Bayesian methods do not make use of the frequentist

style of analysis in the PAC/VC approach, but nevertheless share several

concepts – for example, the idea of a hypothesis or parameter space; the idea

of a distributional bias of members of the hypothesis space; and the idea of a

definition of LEARN that balances how well a hypothesis fits the training data

against some prior probability of that hypothesis.

We are by no means the first authors to suggest that Gold’s framework is

problematic, or that other frameworks such as PAC/VC learning offer a

preferable alternative. Johnson (2004) discusses problems with Gold’s

theorem. Clark (2004) also points out problems with some of the assump-

tions underlying Gold’s approach when applied to grammar induction for

natural languages. Nowak et al. (2002) consider the use of PAC/VC analysis

instead of Gold’s framework; Poggio et al. (2004) propose that the definition

of LEARN can employ a distributional bias that may be useful in language

acquisition. Pereira (2000) makes the point that in some cases infinite hy-

pothesis spaces may be learnable, whereas in some cases finite hypothesis

spaces are too complex. However, he discusses computational complexity of

learning, which we have not discussed here, concentrating instead on com-

plexity in terms of the number of training examples required. Niyogi (2006)

provides an excellent source for theory in this area.

We are also not the first to note that sample complexity (the number of

samples required for effective learning) is an important issue. Several authors

have argued for learning mechanisms within particular (typically strong-

bias) theories on the basis of low sample complexity, at least informally

construed. The work of Niyogi & Berwick (1996) and Niyogi (2006) is a

central example; this work and related efforts are important for addressing

questions of plausibility of P&P models from a learning perspective. We

merely point out that strong bias is neither necessary nor sufficient for low

sample complexity.

Most importantly, PAC/VC learning, online learning, and Bayesian

methods all have a very clear notion of learning bias, which is instantiated

within the choices of H and LEARN. Indeed, results concerning convergence

in the limit, or rate of convergence, give strong evidence for the need for such

a bias, and the relationship between the character of this bias and the feasi-

bility of learning. This runs counter to the perception – which in our view is

misguided – that ‘statistical ’ or ‘empiricist ’ approaches to learning do not

employ bias.

6. D IFFE R E N T C O N C E P T S O F P A R A M E T E R S I N G R A M M A R

There are important distinctions between the notion of parameter

invoked within the P&P view of grammar and the one employed to specify

probabilistic language models. It is useful to identify these differences and

consider their implications for the issues that we are addressing here.
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6.1 Parameters in a P&P theory of UG

Within the P&P framework a parameter is an underspecified element within

one of the conditions that defines UG. Advocates of this framework argue

that parameterized principles of UG provide an effective formal mechanism

for explaining both the facts of language acquisition and of language vari-

ation. We have already addressed the problematic nature of the claim that a

small number of parameters is necessitated by learnability considerations.

Another advantage claimed for this approach is the possibility of organizing

parameters in implicational relations that permit one to express observed

dependencies of grammatical properties across languages. So, for example, a

positive value for the pro-drop parameter is taken to imply selection of rich

verbal agreement morphology.

It is important to note that this approach seeks to maximize the mutual

dependence of parameters through a subsumption relation that supports

type inference. One would expect proponents of this framework to develop

detailed proposals for parameter hierarchies that specify the type structure

which constitutes the core of UG. In fact, as Newmeyer (2004) observes,

after twenty-five years of work within the P&P framework the only instance

of such a parametric type system that has been suggested to date is Baker’s

(2001) parameter hierarchy (PH).

Newmeyer shows that the typological predictions that PH makes are

incorrect for a large class of cases. So, for example, PH entails that head-

final languages exhibit morphological case marking. However, 36% of such

languages do not have case, while significant percentages of non-head-final

languages do (42% of V-initial and 30% of V-medial languages). Newmeyer

also shows that arguments for clustering of properties within a language due

to a particular parameter setting do not, in general, hold. He illustrates

this claim with a systematic study of the relation between null subjects,

subject inversion, and that-trace violations, which indicates that none of the

purported clustering effects among these phenomena are sustained cross-

linguistically.

The potential explanatory significance of parameters has been significantly

weakened by their recent relocation from general principles and con-

straints of grammar to lexical items, specifically functional heads, within

the minimalist program (Chomsky 1995) version of the P&P project. As

Newmeyer points out, on this view parametric values are set not for an entire

language but for individual lexical items and categories. Lexical parameters

become a descriptive device for capturing the facts of word order (and other

phenomena) on virtually a language by language basis. They have little if any

predictive content.20

[20] This point is also argued by Johnson & Lappin (1999: 83f.) and Bouchard (2005).
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Newmeyer argues that a rule-based theory of UG is a better alternative to

the P&P framework. Rules are required in addition to parameters in a P&P

theory in any case, and parameters are, when correctly formulated, fully

equivalent to alternative rules of a particular kind.21

He concludes that discarding parameters in UG has no direct bearing on

the issue of innateness. This is clearly true, as prior to the emergence of the

P&P approach of Chomsky (1981), Chomsky (1965) described UG as the

schema of a grammar that defines the set of possible rules for each compo-

nent of the grammar.

However, giving up the P&P framework seriously undermines the ad-

vantages that its advocates have claimed for a rich theory of UG as the basis

for an explanation of language acquisition, as well as an account of language

variation. Specifically, language acquisition can no longer be reduced to the

process of selecting among a small number of possible values for a finite set

of parameters. Instead, a separate learning theory is required to explain how

a schema of grammar can provide the basis for extracting a particular

grammar from linguistic data. The probabilistic language models that ML

employs can, in principle, fill this gap. But then the burden of innateness

claims falls upon the learning theory that ML provides. To the extent that

a weak-bias model of the sort that we have been suggesting is adequate

to derive the observed facts of grammar, the task-specific content of UG

becomes correspondingly minimal.

6.2 Parameters in probabilistic language models

In contrast to the P&P view of UG, probabilistic language models used in the

natural-language engineering community tend to minimize the number of

parameters and to maximize their relative independence in order to facilitate

the computation of the model. Moreover, these parameters specify the basic

elements of underlying structure in the data, rather than underspecified

features of principles that make up a grammar.

Consider, for example, a simple non-lexicalized probabilistic context-free

grammar G of the sort briefly sketched in section 4.1. We take G as a model of

the language L (as described, for example, by Jurafsky & Martin 2000). Its

parameters are (N, T, P, S, D), where N is the set of non-terminal symbols, T

is the set of terminals (the lexicon), S is the start symbol of G (corresponding

to the root node of a sentence), R is the set of productions (CFG rules), and

D is a function that assigns probabilities to the elements of P. When values

[21] Roberts & Holmberg (2005) challenge Newmeyer’s critique by citing evidence of par-
ametric clustering in several Scandinavian languages. Newmeyer (2006) responds to these
claims effectively by pointing out that (i) the data can be as easily accommodated on a rule-
based account, and, more seriously, (ii) the parameters that Roberts & Holmberg propose
do not generalize across genetically unrelated languages.
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are specified for all of these parameters, G provides a model of L that de-

termines a probability for every sentence s relative to the parses of s that G

produces.

If we have a corpus of parse-annotated sentences of L that provides a gold

standard for the model, then we can set the parameters of G straight-

forwardly. N, T, P, and S are extracted directly from the parse annotations,

and the value of D for each element Apb1 _ bk of P can be estimated by the

MLE formula

c(A ! b1 � � � bk)

c(A ! c)

However, if we have only an unannotated corpus, then it is necessary to

estimate the values of the parameters of G. This involves using statistical

learning algorithms to identify structure in the data corresponding to each of

the parameters. The values of N (non-terminals) and T (terminals) of G can

be identified by unsupervised learning through clustering techniques. Once

these parameters have been specified, S and the elements of P are effectively

given. It is then necessary to estimate D by computing the possible parses of

the sentences in the corpus using a procedure like the inside-outside algor-

ithm (as described, for example, by Manning & Schütze 1999).

Notice that while the parameters of G jointly define the search space for

constructing a grammar they do not have to be taken as irreducibly given, in

the sense that the sets of their possible values are pre-specified, as is the case

for the parameters of a UG within the P&P framework. The possible values

for parameters of a language model like G can be built up on the basis of

antecedent applications of probabilistic learning algorithms that supply

more basic structures. The vocabulary of G can be obtained by unsupervised

morphological learning (Goldsmith 2001, Schone & Jurafsky 2001). The pre-

terminal lexical part of N can be acquired by unsupervised POS tagging

(Clark 2003). The remaining non-terminals and the CFG rules can be

identified through unsupervised grammar induction techniques (Klein &

Manning 2002, 2004). Each of the learning algorithms used to obtain values

for these parameters will in turn require a model with parameters whose

possible values are constrained in non-trivial ways. Some of these parameters

may be further reducible to structures supplied by more basic unsupervised

learning procedures.

7. CO N C L U S I O N

Recent research on unsupervised machine learning of grammar offers

support for the view that knowledge of language can be achieved through

general machine learning methods with a minimal set of initial settings for

possible linguistic categories and rule hypotheses. This work also suggests a
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sequenced bootstrap model of language learning in which each level of

structure acquired provides the input to a higher successor component of

grammar. In at least some cases both the basic categories and the hypothesis

space might be derived from more general cognitive processing patterns (like

the binary branching trees and non-overlap constraint that Klein & Manning

use to bias their models).

Machine learning experiments on grammar induction, particularly those

involving unsupervised learning, can contribute important insights into

the necessary conditions for language acquisition, at the least by vitiating

poverty-of-stimulus arguments. They do not, of course, show us anything

about the processes that human learners actually apply in acquiring natural

language. This is the proper concern of research in psychology and

neuroscience. These experiments can, however, demonstrate the viability of

particular language models as learning mechanisms. To the extent that

the bias of a successful model is defined by a comparatively weak set of

language-specific conditions, we can rely more heavily on task-general

machine learning methods to explain the possibility of acquiring linguistic

knowledge, in lieu of psychological evidence that supports an alternative

view.
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